Potential Drawbacks of Electronic Fetal Monitoring
Electronic fetal monitoring usually requires that a mother wear two monitoring belts around her abdomen during labor, which restricts movement and may even require bed rest. If you read our article “
Evidence on Birthing Positions,” you know that most people in hospital settings give birth in a lying or semi-sitting position. One of the reasons for this is that it is easier for caregivers to access the mother’s abdomen to monitor the fetal heart rate electronically in non-upright positions. Electronic fetal monitoring also usually means that the mother loses the option of
water immersion in a birth pool for pain management.
Not all types of continuous EFM restrict mothers from movement. Mobile monitors are designed to free up mothers, but they are not perfect. Because they are a continuous monitor, they may carry the same increased risk of Cesarean. Like the continuous monitoring belts, they, too, can shift on the mother’s abdomen when she moves, which may lead hospital staff to discourage movement and position changes. When we did a call for images and stories for this article, one mother told us, “The worst part was that the monitor took the focus off of me and put it on the machine. Every time I rolled over or tried to get comfortable, a nurse would come rushing in insisting that she’d lost the signal and that my baby could be in distress and I had to stop moving so much… It created a situation where I was a liability and a problem just for wanting to be the tiniest bit mobile.”
Another potential downside of EFM is that the sounds or display from the monitor could distract laboring people, leading to an increase in their perceived pain during labor. Researchers in Australia conducted face-to-face interviews and written surveys to understand how people’s state of mind relates to how they experience labor pain (Whitburn et al. 2014). They found that for some people, watching the monitor made them feel more distracted and stressed, which was linked to feeling more pain during labor. Laboring people may also feel less supported by their care providers if the providers pay more attention to the monitor than to the person wearing the monitor. Researchers have found that women who do not feel supported by their care providers report more pain and less satisfaction with childbirth (Hodnett 2002).
“Non-Reassuring Fetal Heart Tones” Is the Second Most Common Reason for First-Time Cesareans in the U.S.
Perhaps the most important risk of electronic fetal monitors to be aware of is their effect on Cesareans. In the U.S., “non-reassuring fetal heart tones” is the second most common reason for first-time Cesareans (23%) after Failure to Progress (34%) (ACOG/SMFM 2015). Because non-reassuring fetal heart tones can be a vague diagnosis, several professional organizations in the U.S. came together to decide upon a standard approach to interpreting and managing fetal heart rate tracings, with a goal of preventing unnecessary Cesareans. These are the standard definitions for fetal heart rate tracings (ACOG/SMFM 2015):
- Category I = This is normal and does not require intervention
- Category II = This is called “indeterminate” and may require evaluation, monitoring, and possible “corrective measures” such as position changes (mother lying on left side), turning off Pitocin, giving IV fluids, giving the mother oxygen, giving drugs to slow down contractions, or putting warm fluids in the uterus. However, guidelines state “performance of these interventions without a subsequent change in fetal heart rate pattern is not necessarily an indication for cesarean delivery.” It’s important for care providers to consider the many clinical factors that can affect the fetal heart rate, such as medication use, quick progress in labor, cervical exams, maternal infection, maternal blood pressure, and maternal fever. Attention to these factors may lower the need for Cesarean.
- Category III = This is considered abnormal and requires intervention, which includes the corrective measures listed above. If these efforts do not resolve the problem quickly, ACOG says that you should prepare for delivery right away.
Most EFM tracings during labor are category II, and these account for the majority of Cesareans given for non-reassuring fetal heart rates—including many preventable Cesareans (ACOG/SMFM 2015).
If care providers are concerned about the fetal heart rate, ACOG guidelines state that they can perform an evaluation with “scalp stimulation”—this involves touching the baby’s head and watching the fetal heart rate to see if everything is normal. It may be possible to reduce preventable Cesareans from EFM by using scalp stimulation and attempting corrective measures to resolve the concerning fetal heart rate.
Research also shows that people who give birth in upright positions are 54% less likely to have abnormal fetal heart rate patterns (Gupta et al. 2017). Researchers believe that when people labor and give birth in upright positions there is less risk of compressing the mother’s aorta, which means there is a better oxygen supply to the baby. However, continuous electronic fetal monitoring generally restricts people to bed-lying positions. Having the mother change positions may be helpful for relieving umbilical cord compression that can cause abnormal fetal heart rate patterns.
If Hands-on Listening is Evidence-Based, Why Don’t More Hospitals Use It?
Liability.
One of the main reasons EFM is so common is that doctors, nurses, midwives, and hospitals think that it protects them from cerebral palsy lawsuits. However, the introduction of EFM actually had the effect of
increasing rates of medical malpractice lawsuits (Spector-Bagdady et al. 2017). Back when hands-on listening was used, the care provider would write down what they were hearing, but there was no continuous “strip” or “print-out” recording of the heart rate. There was a low rate of obstetric malpractice, because there were no records to challenge the hospital’s side of the story. After EFM, physicians relied on the new EFM recordings as their defense against cerebral palsy lawsuits. However, the technology was used against them in court, and trial lawyers for parents were able to win billions in lawsuits against physicians (Sartwelle et al. 2017).
One big reason that EFM dominates labor and delivery units today is that judges and juries decide on whether or not a provider committed medical malpractice based upon something called the
standard of care. Standard of care means, how did this doctor practice compared to how other doctors are currently practicing? Standard of care does not mean best practice, and it also does not necessarily mean evidence-based practice. This catches doctors, nurses, and midwives in a catch-22: the use of EFM is not best practice for many women. However, if the baby has a bad health outcome, failure to produce an EFM strip as “proof” for the court can be seen as failure to meet the standard of care. The lack of an EFM recording increases the chance that the hospital will lose the lawsuit or have to settle the lawsuit, losing a large amount of money either way (Spector-Bagdady et al. 2017). EFM is a great example of how care that protects the interests of the care provider does not always protect the laboring person’s best interests.
Lack of resources.
Many hospital labor and delivery units may own only one or two handheld Dopplers—or none at all. Hospital administrators may not understand the value of purchasing small devices for hands-on listening when they have already spent a large amount of money equipping their units with high-tech electronic fetal monitors.
Time.
With hands-on listening, the nurse, midwife, or doctor actually has to be at the bedside of the laboring person every 15-30 minutes during the active phase of the first stage of labor and every 5-15 minutes during the pushing phase of the second stage of labor. Each time they use hands-on listening, they must take a minute to listen to the heart rate while palpating the mother’s abdomen with their hand to feel for a contraction. It is more convenient for staff to look at the monitor on a screen at the nurse’s station (a practice called
central fetal monitoring), especially if they are being pressured to keep up with other duties (Heelan 2013).
But it’s important to realize that less time spent with the mother comes at a price. Research shows that continuous support during childbirth is linked to a 25% decrease in the risk of Cesarean, an 8% increase in the likelihood of spontaneous vaginal birth, a 10% decrease in the use of any medications for pain relief, shorter labors by 41 minutes on average, and a 38% decrease in the baby’s risk of a low five minute Apgar score (Bohren et al. 2017). One unexpected benefit of hands-on listening is that it requires caregivers to spend more time with the laboring mother—and their more frequent physical presence may actually lower pain and increase satisfaction for their patients (Hodnett 2002).
Marketing.
Electronic fetal monitoring is big business. In the early 2010s, there were approximately 28,000 fetal monitors in more than 3,400 hospitals in the U.S., representing an initial investment of over $700 million dollars (BusinessWire, 2012). According to the
Global Fetal Monitoring Report by Allied Market Research, the global fetal monitoring market is expected to reach $3.6 billion by 2022. Even the price to purchase the 200-page report on the global fetal monitoring market is enormous—it costs $4,000 for a single user to read a report about this market. Allied Market Research states that the market for continuous EFM machines in developing countries is “lucrative” and that overall there is a “perpetual need” for fetal monitoring devices.
Hospitals spend significantly more on electronic monitoring systems compared to handheld Dopplers. It’s possible that hospitals are saving on staffing costs by reducing the amount of hands-on care provided to mothers during labor. However, on the other hand, EFM may actually require more time than they realize (Smith et al. 2012). For example, the time taken to maintain EFM equipment, adjust the monitoring belts, continuously watch the monitor, respond to alarms, and interpret the fetal heart strip, could take longer than the time required to use hands-on listening for 1-2 minutes every 15-30 minutes during active labor. In addition, if EFM causes increased maternal discomfort leading to an increased need for pain medication, then this will require increased observation by clinical staff and ultimately a greater strain on human resources. In the end, using electronic fetal monitoring for everyone is an example of high-tech, high-cost, non-evidence-based care.
Training.
Most nurses and doctors are not familiar with using a fetal stethoscope and many have little or no training in hands-on listening. As one obstetrician resident put it, “Nobody does that anymore. Zero. I have seen one [fetal stethoscope] in Africa.” (Wolf 2018). Intermittent auscultation, or hands-on listening, is covered in
AWHONN’s two-day Intermediate EFM course; however, the timetable for the class leaves only about one to two hours (out of 16 hours) for hands-on listening lecture content, skills practice and testing (AWHONN 2017 Instructor Manual). Hospitals often choose to offer the course as continuing education for their staff from
regular course offerings across the U.S.
Clinicians can also
earn a certification in continuous electronic fetal monitoring (C-EFM) from the U.S. National Certification Corporation (NCC). Some hospitals even require their labor and delivery nurses to get this certification. The certification exam includes some content on hands-on listening in the section on “Adjunct Fetal Surveillance Methods.” However, this topic (of which intermittent auscultation is just one piece) makes up less than 10% of the overall content of the exam.
Overall, most nurses and physicians are much more comfortable using EFM rather than hands-on listening, since they have had more training and experience with EFM. Also, if a hospital has not trained their nurses in hands-on listening, or does not have a written policy or protocol, it might be impossible for their nurses to provide this service. In summary, as one midwife wrote on her own blog… “
You CAN say no to the fetal monitor, but you’ll need to bring your own Doppler—and nurse.”
Nurses’ views.
Researchers in Ontario, Canada recently interviewed 12 birthing unit nurses about their views on fetal monitoring during labor (Patey et al. 2017). The nurses in these Canadian hospitals reported that they were very comfortable and confident in their ability to use hands-on listening, but that competing tasks, time limits and the need to multitask get in the way of being able to use hands-on listening with laboring mothers. They also reported that hospital legal concerns were sometimes prioritized over the benefits of hands-on listening. Some nurses reported that hospital policies and a lack of support from care teams limit their use of hands-on listening. Missing and broken handheld Dopplers were also mentioned as a barrier.
In 2012, researchers published a review article that looked at birth professionals’ views of fetal monitoring during labor (Smith et al. 2012). The review included 11 studies with a total of 1,194 participants. They found that many professionals like that EFM provides “proof” that can be used to fight potential lawsuits. However, over time, fewer professionals reported that EFM leads to a good newborn health outcome. The growing evidence that EFM carries risks without clear benefits has probably influenced their views. The authors point out that advances in technology include the ability of a handheld Doppler to store information. This “proof” could help professionals be more comfortable using hands-on listening in practice.
Some professionals in this study liked having the EFM machine step in to “midwife” the patient without requiring a staff member to actually be present. One staff member said,
‘It’s busy, it’s sometimes easier to have them on the monitor, epiduralised, at least you know what’s going on if you’re running in-between rooms.’ In other words, for busy hospital staff, it might be easier to have a woman on an epidural and on a monitor, rather than making more frequent stops into the room to offer comfort measures and use hands-on listening. Interestingly, however, AWHONN practice guidelines recommend 1:1 staffing for people on Pitocin. So, if nurses are already using 1:1 ratios for patients with Pitocin (which is commonly used with epidurals), then it is not that much more time intensive to do 1:1 care and hands-on listening with a client who is off the monitor; unless nurses prefer to do most of their monitoring from outside the patient’s room.
Lack of leadership from professional organizations.
The research overwhelmingly supports hands-on listening compared to EFM, and practice guidelines should state this clearly. There has been recent progress, as we will discuss below; however, all evidence-based practice guidelines should recommend hands-on listening as the preferred method of fetal monitoring.